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An infinite number of effectively infinite clusters are predicted at the percolation
threshold, if "effectively infinite" means that a cluster's mass increases with a
positive power of the lattice size L. All these cluster masses increase as LD with
the fractal dimension D = d — b/v, while the mass of the rth largest cluster for
fixed L decreases as 1/R••*, with h = D/d in d dimensions. These predictions are
confirmed by computer simulations for the square lattice, where D = 91/48 and
;. = 91/96.

For percolation, every site of a large lattice of linear size L in d dimensions
is randomly occupied with probability p, and clusters are sets of neigh-
bouring occupied sites. We call s the mass of the cluster and define clusters
as effectively infinite if their (average) mass goes to infinity with a positive
power of L as L -» oo. For p below the percolation threshold pc, the mass
of the largest cluster goes to infinity for L tending to infinity, but only
logarithmically(1)These clusters are therefore not "effectively infinite" by
our definition. At the percolation threshold, the mass of the largest cluster
scales as LD, with the fractal dimension D= 91/48 in d=2 dimensions.(2)

Thus this mass diverges to infinity as a positive power of L for L -» oo. The
largest cluster is called "the incipient infinite cluster" and is effectively
infinite according to our definition. At pc, the number (per site) ns of
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clusters containing s sites each decays as s-r and T= 1 +d/D = 187/91 for
d=2, as recently reconfirmed(3) using a square lattice with L = 2 million,
the largest lattices (to our knowledge) ever simulated. The present note
looks at other large clusters, which are not the largest but nevertheless
become effectively infinite in the above sense.

Some mathematical publications proved that what they called "the
infinite cluster" is unique.(4) However, their definition of "infinite" was not
the same as our definition of "effectively infinite," and it did not apply to
the extrapolation of finite samples to infinity, as must be done in all
computer simulations, including the present problem. Furthermore, that
definition also does not apply to spanning clusters, which were shown to be
non-unique.(5,6) We have searched the mathematical physics literature, and
failed to find a clean definition of an "infinite cluster" which would help us
in a numerical test on extrapolated finite samples. This is the reason for our
new definition.

Already a long time ago,(7) the masses of the second and third-largest
cluster were investigated by simulations at the threshold, and were found
to be proportional to that of the largest one. This leads to the conclusion
that the second largest cluster also scales as LD. This non-uniqueness of the

Fig. I. Cluster mass versus lattice size L for rank 1, 2, 3, 10, and 100 (from top to bottom).
Typically we averaged here and in the later figures over 20 samples for each L.
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effectively infinite cluster is investigated here more systematically. In par-
ticular, we present a systematic study of the dependence of the rth largest
cluster on its "rank" r. In an earlier effort of Watanabe,(8) the dependence
of the cluster mass on its rank was wrongly fitted to what the author called
"Zipf's law," .sr,. oc 1/r. This was done in both two and three dimensions. As
we will explain here, there is no reason to expect such a law, and the fit
simply resulted from the small samples, from the closeness of the exponent
to 1 and from using data for p<pc. We note that Zipf's law is not as
general as some authors imply!

At pc,.,ns is proportional to s-tand therefore the total number of
clusters with mass >s in a sample of linear size L varies as Ns oc L d s 1 - T .
As a result,(9) the average mass of the rth largest cluster should be

where X= 1/(T — 1) — D/d=91/96 in d = 2 and where we have used the
expression T= 1 +d/D= 187/91. Thus, the masses of all the large clusters
are proportional to that of the largest one, with an amplitude which
decreases with the cluster's rank r.

Fig. 2. Cluster mass versus rank for lattice size L/100= I, 2, 5, 10, 20, 50, 100, 200, 500,
1000, and 2000 (from bottom to top).
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with the scaling function f(z) approaching a constant for small z = s/LD

and going to zero for large z. Thus for the largest clusters some deviations
are expected and seen.(3) However, Eq. (2) still predicts that the rank r is
a function of the scaled variable zr. = s r/L

D , r = z 1 - T f ( z r ) , approaching the
power law z1-T for small zr., or equivalently for large r. Therefore, Eq. (1)
is not exact for the largest or second largest cluster, but it becomes
accurate for large ranks r. Eq. (2) is also not exact for small clusters,
s=1,2,..., when NsccLd. We conclude that Eq. (1) is expected to be
correct for the intermediate range 1 « r « Ld

We tested these predictions using the Hoshen-Kopelmen routine with
the Nakanishi method of recycling redundant labels,(10) for the square
L x L lattice at pc = 0.592746. The Hoshen-Kopelman method is used here

More precisely, in a large but finite lattice, finite-size scaling predicts
at p =pc:p

(2)

Fig. 3. Effective exponent Aeff of cluster mass versus inverse rank r, for 1 0 < r < 1000 and
L = 200,000. We have subdivided the data into ten regions of roughly equal size on a
logarithmic scale in the rank. For each region we find by a least-squares fit the best slope in
log(mass) versus log(rank). This value of Geff is shown with the average rank for the region.
This exponent should converge towards 91/96 for r -> oo.



for two-dimensional random site percolation in the following manner. We
consider one row at a time and randomly determine if a site is occupied or
vacant. If vacant we label the site as vacant and move to the next site. If
occupied we look at the neighbour to the left and top. If these are both
empty then we assign a new label and a size of unity to this occupied site.
If both neighbours are occupied, or one is occupied, then we assign the
lowest label to the new site and we also adjust the size of this growing
cluster. All other labels from the neighbours are redundant. The Nakanishi
recycling of labels is used to compress the labels by removing all redundant
labels from the growing percolation system.

Figure 1 shows the average masses for r= 1, 2, 3, 10 and 100 as a func-
tion of L; we see nearly parallel straight lines with the expected slope
D= 1.9 in this log-log plot (see ref. 2 for better data for this fractal dimen-
sion). Figure 2 shows for various L the mass of the 100 largest clusters
as a function of rank r, in the right part of the figure we see parallel
straight lines with a slope near unity. More precisely, Fig. 3 shows for
L = 200,000 and rank r up to 1000 the effective exponent A (negative slope
of the log-log plot in Fig. 2) versus the reciprocal rank; the data can be
extrapolated to an asymptotic exponent slightly smaller than one, roughly
compatible with the theoretical prediction A = 91/96 ~ 0.95 of Eq. ( 1 ) .

Thus again scaling theory is confirmed, and at the threshold already
in two dimensions we have infinitely many effectively infinite clusters.
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